nextjsmdxmetadata

My Awesome Post

My Awesome Post

Here is the content of my post.

Understanding Gemini: Google's Multimodal AI Breakthrough

Mathematical Foundations

Basic Attention Mechanism

The core attention mechanism in Gemini can be expressed through several equations. The scaled dot-product attention is defined as:

Attention(Q,K,V)=softmax(QKTdk)V\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V

where the scaling factor dk\sqrt{d_k} prevents the dot products from growing too large in magnitude.

Multi-Head Attention

Multi-head attention allows the model to attend to information from different representation subspaces:

MultiHead(Q,K,V)=Concat(head1,,headh)WO\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O

where each head is computed as:

headi=Attention(QWiQ,KWiK,VWiV)\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)

Position-wise Feed-Forward Networks

Each transformer layer includes a feed-forward network:

FFN(x)=max(0,xW1+b1)W2+b2\text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2

Layer Normalization

Layer normalization is applied before each sub-layer:

LayerNorm(x)=γxμσ2+ϵ+β\text{LayerNorm}(x) = \gamma \odot \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} + \beta

where:

  • μ\mu is the mean: μ=1ni=1nxi\mu = \frac{1}{n}\sum_{i=1}^n x_i
  • σ2\sigma^2 is the variance: σ2=1ni=1n(xiμ)2\sigma^2 = \frac{1}{n}\sum_{i=1}^n (x_i - \mu)^2
  • γ\gamma and β\beta are learnable parameters

Cross-Modal Attention

For multimodal processing, Gemini uses cross-attention between different modalities:

CrossAttention(xi,xj)=h=1Hsoftmax(WhQxi(WhKxj)Tdk)WhVxj\text{CrossAttention}(x_i, x_j) = \sum_{h=1}^H \text{softmax}\left(\frac{W_h^Q x_i \cdot (W_h^K x_j)^T}{\sqrt{d_k}}\right)W_h^V x_j

Loss Functions

The training involves multiple loss components:

  1. Language Modeling Loss: LLM=t=1TlogP(wtw<t)\mathcal{L}_\text{LM} = -\sum_{t=1}^T \log P(w_t|w_{<t})

  2. Cross-Modal Alignment Loss: Lalign=logexp(s(xi,yi)/τ)j=1Nexp(s(xi,yj)/τ)\mathcal{L}_\text{align} = -\log \frac{\exp(s(x_i, y_i)/\tau)}{\sum_{j=1}^N \exp(s(x_i, y_j)/\tau)}

  3. Total Loss: Ltotal=αLLM+βLalign+γLreg\mathcal{L}_\text{total} = \alpha\mathcal{L}_\text{LM} + \beta\mathcal{L}_\text{align} + \gamma\mathcal{L}_\text{reg}

Optimization

The model is optimized using AdaFactor with a learning rate schedule:

lr(t)=dmodel0.5min(t0.5,twarmup_steps1.5)\text{lr}(t) = d_\text{model}^{-0.5} \cdot \min(t^{-0.5}, t \cdot \text{warmup\_steps}^{-1.5})

Matrix Calculations

Key matrix operations in the model:

  1. Attention Scores: s_{11} & s_{12} & \cdots & s_{1n} \\ s_{21} & s_{22} & \cdots & s_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ s_{m1} & s_{m2} & \cdots & s_{mn} \end{bmatrix}$$
  2. Softmax Operation: softmax(xi)=exp(xi)j=1nexp(xj)\text{softmax}(x_i) = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)}

Probability Distributions

The model uses various probability distributions:

  1. Gaussian Attention Prior: P(aij)=1σ2πexp((ij)22σ2)P(a_{ij}) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(i-j)^2}{2\sigma^2}\right)

  2. Categorical Distribution for Token Prediction: P(wtw<t)=softmax(htW+b)P(w_t|w_{<t}) = \text{softmax}(h_t W + b)

Complex Numbers and Fourier Transform

Position encoding uses complex numbers:

PE(pos,2i)=sin(pos100002i/dmodel)\text{PE}_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{\text{model}}}}\right) PE(pos,2i+1)=cos(pos100002i/dmodel)\text{PE}_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{\text{model}}}}\right)

Integration and Derivatives

The gradient updates follow:

LW=0TLytytWdt\frac{\partial \mathcal{L}}{\partial W} = \int_0^T \frac{\partial \mathcal{L}}{\partial y_t} \frac{\partial y_t}{\partial W} dt

Statistical Measures

Performance metrics include:

  1. Mean Squared Error: MSE=1ni=1n(yiy^i)2\text{MSE} = \frac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2

  2. Cross-Entropy Loss: H(p,q)=xp(x)logq(x)H(p,q) = -\sum_{x} p(x) \log q(x)

  3. KL Divergence: DKL(PQ)=xXP(x)log(P(x)Q(x))D_{\text{KL}}(P\|Q) = \sum_{x\in\mathcal{X}} P(x) \log\left(\frac{P(x)}{Q(x)}\right)

[Rest of the article content remains the same...]